Errata and Updates for the 2nd Edition of the ACTEX Manual for Exam P

(Last updated 08/26/2025) sorted by page

Page 157 **Problem 19. Third line.**

After "The proportion of the coins in the collection that are loaded towards a head is p", add "and the rest of the coins are loaded towards a tail".

Page 185 Problem 14. First line.

Change "denote2" to "denotes".

Page 347 Problem 27. Second line.

Change "...an exponential distribution with mean 2." to "...an exponential distribution with mean 1."

Page 381 **Problem 17.**

Change the choices to:

(A) 0.5793 (B) 0.5987 (C) 0.6179 (D) 0.6554 (E) 0.6915

Page 391 Solution to Problem 17.

Change the solution to:

Suppose that the lognormal parameters are
$$\mu$$
 and σ . Then $P[X \le 1] = P[\ln X \le \ln 1] = P\left[\frac{\ln X - \mu}{\sigma} \le \frac{0 - \mu}{\sigma}\right] = \Phi\left(\frac{-\mu}{\sigma}\right) = 0.4013,$

and
$$P[X \le 2] = P[\ln X \le \ln 2] = P\left[\frac{\ln X - \mu}{\sigma} \le \frac{\ln 2 - \mu}{\sigma}\right] = \Phi\left(\frac{\ln 2 - \mu}{\sigma}\right) = 0.5000.$$

From the normal table we get $\frac{-\mu}{\sigma} = -0.25$ and $\frac{\ln 2 - \mu}{\sigma} = 0.0$. Solving for μ and σ results in $\mu = \ln 2$ and $\sigma = 4 \ln 2$.

Then
$$P[X \le 4] = P[\ln X \le \ln 4] = P\left[\frac{\ln X - \mu}{\sigma} \le \frac{\ln 4 - \mu}{\sigma}\right]$$

$$= \Phi\left(\frac{\ln 4 - \ln 2}{4\ln 2}\right) = \Phi(0.25) = 0.5987.$$

Answer B

Page 398 Problem 6.

Change the choices to:

(A) $\frac{1}{35}$ (B) $\frac{2}{35}$ (C) $\frac{4}{35}$ (D) $\frac{8}{35}$

Page 405 Solution to Problem 6.

Change last line of the solution to:

Then $E[X^3] = \frac{\Gamma(2+3) \times \Gamma(2+3)}{\Gamma(2) \times \Gamma(2+3+3)} = \frac{4! \times 4!}{1! \times 7!} = \frac{4}{35}.$

Page 419 **Problem 21.**

Change the choices to:

(A) $\frac{2}{3}$

(B) 1

(C) 6

(D) 2^3

(E) 3^2

Page 430 Solution to Problem 21.

Change the last two lines to:

Similarly, $E[Y] = \sum_{y=1}^{\infty} \frac{4}{3} \times \frac{y^2}{3^y} = \frac{4}{3} \times \frac{3^2+3}{(3-1)^3} = 2.$

 $E[XY] = E[X] \times E[Y] = 3 \times 2 = 6.$

Page 436 **Problem 6.**

Change the choices to:

(A) $\frac{27}{16}$ (B) $\frac{81}{16}$ (C) $\frac{27}{8}$ (D) $\frac{81}{8}$ (E) $\frac{27}{4}$

Page 446 Solution to Problem 6.

Change 648 to 1944 and the last line should read:

$$\frac{E[X^4]}{E[Y^3]} = \frac{1944}{384} = \frac{81}{16}.$$

Page 528 Solution to Problem 23. Third Line.

Remove the extra 125. It should read:

$$= \frac{U^2}{2000} \, + \, U \times \frac{1000 - U - 150}{1000} = \frac{1700 U - U^2}{2000}.$$